North Mountain IMS Medical Office Building

Phoenix, Arizona

Michael Hopple

<u>Technical Assignment 2</u> October 29th, 2007 AE 481W-Senior Thesis The Pennsylvania State University Faculty Adviser: Dr. Ali Memari, P.E.

Table Of Contents

Executive Summary	Page 3
Codes and Standards	Page 4
Load Summary	Page 5
Existing System: Pre-cast Concrete Double Tees	Page 6
System 1: Composite Steel Framing	Page 8
System 2: Hollow-core Plank	Page 10
System 3: Steel Joists	Page 11
System 4: Two-way Concrete Waffle Slab	Page 12
Summary Comparison Chart	Page 13
Conclusions	Page 14
Appendix	Page 15
Deck and Slab Design	Page 15
Hollow-core Plank Design	Page 16
Steel Joist Design	Page 17
Two-way Concrete Waffle Slab Design	Page 18

Executive Summary

Technical Assignment 2 is an exploration of different floor systems comparing structural, construction, and architectural issues. North Mountain IMS Office Building currently uses a complete pre-cast concrete structural system. This system utilizes 10'-0" feet wide by 2'-0" deep pre-stressed double tees as floor framing. This system was most likely chosen due to the great span to depth ratio of pre-stressed members. With a typical bay reaching 48'-0", the use of double tees eliminates interior columns, which allows for maximum flexibility for the three floors of rentable office space. However, designing an alternative floor system with a typical span of 48'-0" is a challenge. To allow for thorough investigations of multiple floor systems, structural bays that span 30'-0" will also be considered for certain floors.

The floor systems explored:

Existing System: Pre-cast Concrete Double Tees System 1: Composite Steel Framing System 2: Hollow-Core Plank System 3: Steel Joists System 4: Two-way Concrete Waffle Slab

Comparisons are based on many issues such as cost, weight, efficiency, depth, constructability, and fire rating. The Summary Comparison Chart can be found on page 13. It is important to keep in mind that this report is based on simple assumptions and is intended to be a guide for future thesis redesign reports. Information for comparing the various systems was gathered from many different resources; they are noted throughout the report as needed.

Based on various criteria, the following floor systems are viable options for alternative floor systems, composite steel framing and two-way concrete waffle slab. However, for the two-way slab and the composite framing to be viable options, different bay sizes must be explored. As stated before, 30'-0" x 30'-0" bays were analyzed for the waffle slab and composite steel system.

Codes and Standards

Note: The Senior Thesis project requires the use of the most current codes and standards, those referenced for calculations in this report are listed at the end of this section.

Building Codes:

- 1. International Building Code (IBC), 2003 edition
- 2. International Energy Code (IECC), 2003 edition with 2004 supplements
- 3. National Electric Code (NEC), 2005 edition with Phoenix amendments
- 4. International Mechanical Code (IMC), 2003 edition with Phoenix amendments
- 5. Arizona State Plumbing Code, with 2003 supplements
- 6. Uniform Fire Code (UFC), 1997 edition with Phoenix amendments

Structural Codes:

- 1. American Concrete Institute (ACI-318), 2002 edition
- 2. Precast Concrete Institute (PCI), 6th edition

Building Design Loads:

1. American Society of Civil Engineers (ASCE-7), 2002 edition

Thesis Project Codes and Loads:

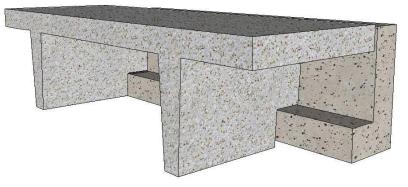
IBC 2005
 ASCE-7, 2005
 ACI-318 2005
 AISC 2005
 PCI, 6th edition

Load Summary

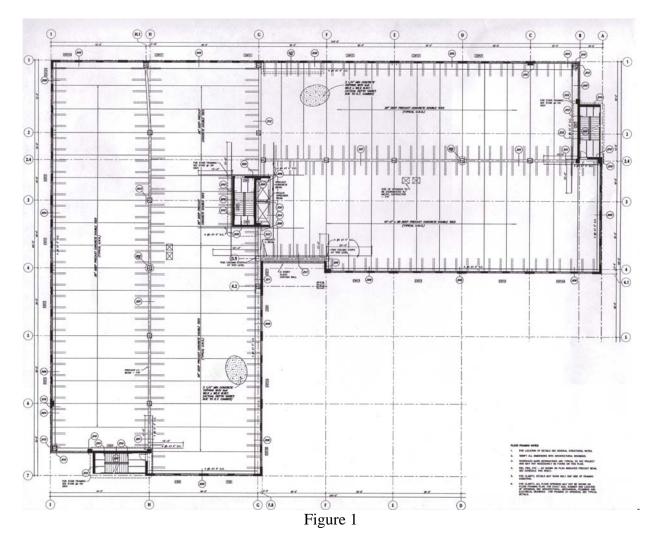
Live Loads:

	Roof Live Load	-
•	Floor Live Load	-
•	Stair Live Load	100 psf
٠	Partition Live Load	20 psf
Dead L	Loads:	
•	Superimposed Roof Dead Load	15 psf
•	Superimposed Floor Dead Load	15 psf
Wind I	Load:	
•	Total Wind Force (North-South Direction)	218 kips
•	Total Wind Force (East-West Direction)	285 kips

Seismic Load:


• Design Base Shear.....1627 kips

The floor live loads for North Mountain are typical office loads. The second, third, and forth floors all feature an open floor plan with no set dimensions for walls or corridors. Because of the open floor plan, the floor live load is 80 psf. By code, corridor loading above the first floor is 80 psf. This value was used as the live load over the entire floor. In design, it is much easier to assume a uniform load over the entire floor compared to breaking the loads down between office and corridors. Also, a partition live load of 20 psf is used over the entire floor.


The floor dead load only accounts for 15 psf of superimposed load which includes mechanical, electrical, and pluming equipment. The nature of precast concrete structures makes it very simple to calculate the actual weight of the structure; a dead load in pounds per square foot is not needed because each piece of precast is detailed and the exact weight calculated.

Existing System: Pre-cast Concrete Double Tees

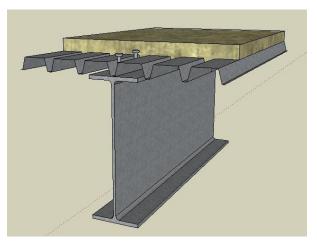
North Mountain IMS Office Building floor framing consists of 2'-0" deep, 10'-0" wide double tees with a minimum of 3-1/4" concrete topping. This minimum topping thickness is needed to produce the required 2 hour fire rating between the first and second floor. The tees are normal-weight concrete and have a 28-day compressive

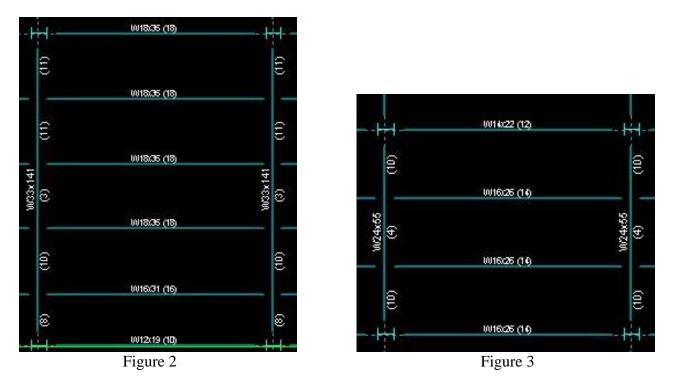
strength of 6,000 psi. The minimum prestress release strength is 4,200 psi. The prestressing strand is 7 wire, ¹/₂" diameter 270 ksi low relaxation strand. Each strand is pulled to 72.5% capacity, which results in a 30 kip force. The strand is held down at one point in the middle of the tee. Depressed strand provides greater flexural strength while reducing the stresses in the concrete during prestress release. Typical spans are 44', 48', and 54'. Figure 1 shows the second floor plan and double tee layout.

The 2'-0" deep double tees bear on 2'-0" deep by 2'-8" wide inverted tee girders. 28-day strength is 7,500 psi and minimum release strength is 3,750 psi. Typical inverted tee girders use 22 $\frac{1}{2}$ " diameter stands for tensile reinforcement. Span length for a 30'-0" bay is 28'-0" due to the columns on each end. Dapped ends on the double tees allow the top of the tee to line flush with the top of the girder. The topping is then poured over the tee and the girder at the same time, interlocking them.

Precast concrete as a material and building technique can provide structures that are very economical and efficient. North Mountain IMS Office Building is well balanced between function, economics, and efficiency. However, obtaining a balanced building project is no simple task. Precast design encompasses many different disciplines which add to the complexity of a project. There are architects, engineers, fabricators, and erectors each with their own unique objectives. Economical and efficient precast structures effectively combine all parties' objectives. Communication and good project management is extremely important; all parties involved must work closely together.

The precast fabricator is a large component because they can only make pieces in certain sizes and shapes. The architect and design engineer must first consider the capabilities of the fabricator when considering a precast structure. This is only one example why early communication is an essential part of the design process.


Repetition and similarity work best for precast; money is saved because there is less time associated with detailing and fabrication. North Mountain utilizes this principle very well. Each floor is almost identical with similar double tee and girder spans.


North Mountain exclusively uses normal-weight concrete. Due to large structure weight, the seismic load for this building is more than five times than the wind load. It would be a reasonable exercise to analyze the structure using a light-weight concrete, since reducing the weight is the only way to reduce the seismic load.

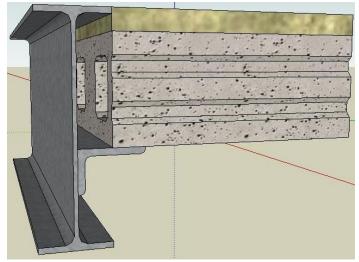
Pre-cast Concrete	Double Tees
Positives	Negatives
Span to depth ratio	Weight
Fast construction time	Transportation of pieces
Fabricated in a controlled shop setting No fire proofing	Labor intensive

System 1: Composite Steel Framing

Composite steel construction allows for shallow steel members compared to non-composite construction because the strength of the concrete floor is used in combination with the steel section. With girder spans up to 48'-0", non-composite construction was not considered for this report. Even with a composite framing system, steel members must be deep to meet deflection requirements with large spans. A RAM Structural System Model is used to design steel sections for the typical existing bay, 48'0" x 30'-0" and a 30'-0" x 30'-0" bay; Figures 2 and 3 show the preliminary sizes for steel sections of each bay, respectively.

Intermediate beams are spaced at 10'-0" on center with a girder spanning the 48'-0" and 30'-0" dimensions. A difference of 9" (nominal) total floor depth is observed between the two bay sizes. However, there are obviously more columns resulting in more foundations and longer steel erection time, because there are more pieces to connect.

The deck and concrete slab was designed using Vulcraft load tables. The design of the deck can be found on page 15 in the Appendix. A main factor effecting slab design is fire rating. Another factor is unshored span length. It is important that the deck can support construction loads without having to be shored from below; it is an unnecessary addition to labor casts and construction time. In reference to the above criteria and strength requirements, a 2" composite deck with 3-1/4" concrete topping has been


selected. This deck is designated as 2VLI19 with t=3-1/4". The combination of deck and slab chosen requires no fire proofing, which will save construction time.

Positives	Negatives
Low cost	Heavy steel sections
Easy to construct	Deep structural sandwich
Maintains structural grid Acoustic performance	Needs fire proofing

System 2: Hollow-Core Plank

Pre-stressed hollow-core plank provides great span to depth ratio due to the pre-stressing force. Voids in the plank keep them lighter than a regular concrete slab. These voids could also be insulated to prevent thermal and sound transmission. Load tables from the PCI Design Handbook were used to size the plank. However, each hollow-core fabricator has unique section properties and specific details for producing their own product. This could result in slightly different designs from precaster to precaster.

Using the existing bay size, the plank


would span 30'-0" and would bear on a large girder. The girder spans 48'-0". Based on load tables, 10" deep planks with 2" topping are required to carry the necessary floor loads. The girder supporting the plank was sized with hand deflection calculations, resulting in a W36x182. The girder is much larger than the composite framing beams due to increased dead load of the hollow-core and the lack of composite action. This calculation is shown on page 16 in the Appendix. A steel angle would have to be welded to the web of the steel girder to support the plank. Normally, the plank rests directly on the top flange of the girder, but due to the large depth of this girder, a different arrangement is necessary.

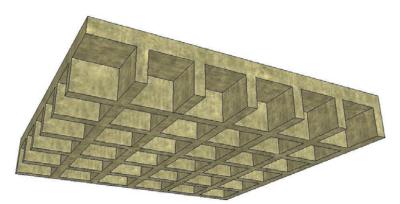
Hollow-core	Plank
Positives	Negatives
Plank span to depth ratio	Cost
Fabricated in controlled shop setting	High dead load
Quick erection time	Large steel girders
Potential one piece floor and ceiling	
Compatability with other materials	

System 3: Steel Joists

Steel joists provide a great floor system because they are light weight and relatively shallow. This system is so light weight because each member acts as a truss. However, due to this light system, vibration control can become an issue. A vibration analysis is beyond the scope of this report, but would need to be addressed if this system is chosen for future thesis assignments.

The criteria and load table used to design the steel joists can be found on page 17 in the Appendix. Spanning 30'-0" and with 5'-0" joist spacing, a 24LH7 was required to

support dead and live loads. Less concrete is needed for the slab, because the joists are spaced closer together than the beams for the composite system. This creates a floor system that is nearly 30 pounds per square foot lighter than the closest competitor.


Once again, a large steel girder is needed to span 48'-0". With a W36 x 135 and 3.5" of concrete, the total depth of the floor becomes 39.5". This is a full foot deeper than the existing pre-cast concrete system. Steel joists also tend to be relatively expensive. With joists spaced at 5'-0", there are a lot of members to be installed and connections to be welded; it becomes a labor intensive job. Unlike precast which also has lots of connections, one pre-cast member accounts for much more of the structural system, and erection time is significantly shorter.

Call March	NUMBER OF THE OWNER
Positives	Negatives
Light weight	Large steel girder to span 48
Joist have good span to depth ratio	Vibration resistance
Fabricated in a controlled shop setting	Cost
Qualifies for LEED building design	Overall depth
MEP can run through open webs	Labor intensive
	Requires fire proofing

System 4: Two-way Concrete Waffle Slab

A two-way concrete system is another system that provides a great span to depth ratio. However, $30'-0" \ge 30'-0"$ bays were used to size the waffle slab system. This results in more columns in the floor plan but can provide a shorter floor to floor height.

Using CRSI Design Handbook reinforcing a relatively shallow system was selected. The slab is 3" think and the ribs are only 8" deep. The slab reinforcing is

divided into column strip and middle strip. The design chart from CRSI is shown on page 18 in the Appendix. Middle strip reinforcing is 2 #6 bars in the bottom and 11 #5 in the slab. Column strip reinforcing is 1-#8 and 1-#7 in the bottom and 23 #6 in the slab.

Two-way Cond	rrete Waffle Slab
Positives	Negatives
Great span to depth ratio	Labor intensive
No fire proofing	Extensive formwork and shoring
Shallow structural sandwich	Changes to sturtural bays
	Quality control

Summary Comparison Chart

System	Double Tees	Compo	site Steel	Concrete Waffle Slab	Hollow-core Plank	Steel Joists
Bay Size	48'-0" x 30'-0"	30'-0" x 30'-0"	48'-0" x 30'-0"	30'-0" x 30'-0"	48'-0" x 30'-0"	48'-0" x 30'-0"
*Cost (\$/ft. ²)	\$18.92	\$18.95	n/a	\$21.00	\$21.73	\$20.55
Erection Time	very fast, long lead time for tee fabrication		ead time for el sections	slow, uses lots of temporary form work and shoring	fast, long lead time for large steel sections	slow, many members to place and attach
Weight (lbs.∕ft. ²)	Tees: 47 psf Topping: 40 psf Total: 87 psf	Deck Framir	te:65 psf :3 psf ng:5 psf 73 psf	Slab: 37 psf Beams: 25 psf Total: 59 psf	Topping: 25 psf Plank: 68 psf Framing: 5 psf Total: 98 psf	Concrete: 23 psf Deck: 3 psf Joists: 5 psf Total: 31 psf
Overall Depth of Floor System (in)	Tees: 24" Topping: 3.25" Total: 27.25"	Concrete: 5.25" Girder: 24" Total: 29.25"	Concrete: 5.25" Girder: 33" Total: 38.25"	Slab: 3" Beams: 8" Total: 11"	Topping: 2" Plank: 10" Girder: 36" Total: 38"	Concrete: 3.5" Joists: 24" Girder: 36" Total: 39.5"
Effects to Other Structural Elements	n/a	Service Service States and	exterior walls, oment frame	moment frame analysis, increased foundations, exterior wall system	connections to exterior walls	connections to exterior walls
Vibration Resistance	very good	ave	rage	very good	above average	below average
Fire Proofing	no additional fire proofing required with 3-1/4" topping	CONTRACTOR AND	l with certain of deck	not required	not required	spray-on fire proofing
Arcitectural Issues	n/a existing system	more columns in office space	deeper floor system	more columns in office space, less deep	much deeper floor	much deeper floor
Viable Solution	Existing System	Yes	No	Yes	No	No

* Cost data obtained from RS Means Assemblies pricing guide.

Conclusions

Based on the above summary comparison chart and design data, it has been determined that there are no other reasonable options at 48'-0" x 30'-0" bays for the systems analyzed within this report. Because of the large spans, the other systems are much deeper than the existing precast double tee system and deemed them unacceptable. In a medical office building, it is important to have a shallow structural sandwich so mechanical, electrical and plumbing systems can fit, and tenants can effectively use the office space.

However, the two systems analyzed with 30'-0" x 30'-0" bays are both acceptable options for redesign. These two systems are the two-way concrete waffle slab and composite steel framing. Despite adding more columns and foundations to the structure, these floor systems would provide a cost effective and efficient floor. North Mountain IMS Office Building is a great example of how prestressed, precast concrete can be very cost effective with long spans and competitive to other systems.

Appendix

Deck and Slab Design

- CRITERIA: · USE COMPOSITE DECK
 - · NEED 2. HOUR FIRE RATING
 - · BEAM SPACING 10'-0" O.C.
 - · OPEN WEB JOIST SPACING 5'-6" O.C.
 - · UNSHORED CONSTRUCTION
 - · SERVICE LOAD = 115psf
 - · LIVE LOAD = 100psf
 - · LIGHTWEIGHT CONCRETE

FOR COMPOSETE STEEL BEAMS:

USE 2YLII9 w/ + 34'' W=14) LIGHTWEIGHT CONCRETE (110 PCF) Total Sab Deck Clear Span Deck Clear Span

· NO ADDITIONAL FIRE PROOFING REQUIRED

Total		SD	Max. Unsh							Sup	erimpose		
Siab	Deck		Clear Spar									Span (fti	
Depth	Туре	1 Span	2 Span	3 Span	6'-0	6'-6	7'-0	7:-6	8'-0	8'-6	9'-0	9'-6	10'-0
	2VLI22	7'-2	9'-6	9'-8	238	209	186	149	133	120	108	98	90
4	2VLI21	7'-10	10'-2	10'-6	254	223	198	178	142	128	115	105	96
	2VLI20	8'-5	10'-9	11'-1	268	235	209	187	169	135	122	110	101
+t=2")	2VLI19	9'-6	11'-11	12'-4	297	260	230	206	185	168	153	141	111
	2VLI18	10'-6	12'-10	13'-3	324	285	253	227	205	187	171	158	146
30 PSF	2VLI17	11'-5	13'-8	14'-0	352	308	273	245	221	201	184	169	156
13 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	2VLI16	12.1	14'-4	14'-4	377	330	292	261	235	214	195	179	165
	2VLI22	6'-9	9'-1	9'-3	276	243	195	173	155	139	126	114	104
412	2VLI21	7'-5	9'-9	10'-1	295	259	231	185	165	149	134	122	111
	2VLI20	8'-0	10'-4	10'-8	312	273	243	217	196	157	141	128	117
=212)	2VLI19	9'-0	11'-5	11'-9	346	302	268	239	215	195	178	142	129
	2VL118	10'-0	12'-3	12'-8	376	331	294	264	238	217	199	183	170
35 PSF	2VLI17	10'-10	13'-1	13'-6	400	358	318	284	256	233	213	196	181
	2VLI16	11'-5	13'-8	13'-10	400	384	340	303	273 -	248	227	208	192
	2VLI22	6'-6	8'-8	8'-10	315	277	222	197	176	159	144	130	119
5	2VLI21	7'-1	9'-4	9'-8	337	296	263	211	189	169	153	139	127
	2VLI20	7'-7	9'-11	10'-3	355	312	276	248	199	179	161	146	133
(t=3')	2VLI19	8'-7	10'-11	11'-4	394	345	305	272	245	223	178	162	147
	2VL118	9'-6	11'-10	12-2	400	377	335	300	272	247	227	209	168
40 PSF	2VLI17	10'-3	12'-7	13'-0	400	400	362	324	292	266	243	223	207
	2VLI16	10'-11	13'-2	13'-5	400	400	387	346	311	283	258	237	219
	2VLI22	6'-4	8'-6	8'-8	334	268	236	209	187	168	152	138	126
514	2VLI21	7'-0	9'-2	9'-6	357	314	279	224	200	180	163	148	135
	2VLI20	7'-6	9'-8	10'-0	377	331	293	263	211	190	171	155	142
:=314)	2VLI19	8'-5	10'-9	11'-1	400	366	324	289	260	210	189	172	156
192223	2VLI18	9'-3	11'-7	12'-0	400	400	355	319	288	263	241	195	179
42 PSF	2VLI17	10'-1	12'-4	12'-9	400	400	384	344	310	282	258	237	219
070070	21/116	10'-8	12.11	13'.3	400	400	400	367	330	300	274	252	232

FOR OPEN WER STEEL JOISTS:

USE 1.5VL22 w/ += 2

· SPRAY FIRE PROOFING IS REQUIRED.

(N=14) LIGHTWEIGHT CONCRETE (110 PCF)

	.,						/							
Total	ſ	SDI	Max. Unsh	ored						Sup	perimpose	d Live Lo	ad, PSF	1
Slab	Deck		Clear Span			_					Clear S	pan (ftir	1.)	
Depth	Type	1 Span	2 Span	3 Span	5'-0	5'-6	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6
	1.5VL22	5'-7	7'-5	7'-6	278	247	206	185	167	152	139	124	105	89
3 1/2"	1.5VL21	6'-3	8'-3	8'-5	293	260	233	195	177	161	147	130	110	93
	1.5VL20	6'-8	8'-11	9'-0	305	271	243	220	185	168	154	135	114	97
(t=2")	1.5VL19	7'-6	10'-0	10'-1	329	292	262	237	216	198	167	145	122	104
	1.5VL18	8'-2	10'-8	11'-0	350	311	279	252	230	211	184	153	129	110
26 PSF	1.5VL17	8'-11	11'-4	11'-8	352	312	280	253	231	212	195	163	137	116
	1.5VL16	9'-6	11'-10	12'-3	352	312	280	253	231	212	195	171	144	122
														1.0.0

Hollow-core Plank Design

SERVICE LOAD = 115psf LIVE LOAD - 100 pst USE 4HC10+2 W/ 58-5 STRAND CODE

4HC10 + 2

b of safe superimposed service load (psf) and camber (in.)

rand													Sp	oan,	ft												
na tion od e	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
	308	287	256	228	204	183	165	148	133	119	107	96	86	74	63	52	43	34	26								
-S	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.1	0.1		-0.1											
	0.3	0.3	0.3	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	-0.2	-0.3	-0.4	-0.6	-0.8	-1.0	-1.2	-1.4	-1.7								
	317	298	282	267	252	237	219	198	180	163	148	134	120	105	92	80	69	59	50	41	33	26					
s-s	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.3	-	0.2				-0.3						
	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.1	0.0	-0.1	-0.2	-0.4	-0.5	-0.7	-0.9	-1.2	-1.5	-1.8	-2.1			_		
	326	307	291	273	258	246	234	222	212	202	188	171	153	137	122	108	96	84	74	64	55	46	38	31			
S-S	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6		0.5	0.5	0.4	0.3	0.2			-0.2			
	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.4	0.4	0.3	0.2	0.0	-0.1	-0.3	-0.5	-0.7	-0.9	-1.2	-1.5	-1.8	-2.2			
	335	313	297	279	267	252	240	228	218	208	196	189	181	165	150	135	122	109	97	86	76	67	58	50	42	35	28
S-S	0.6	0.7	0.7	0.7	0.8	0.8	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.7	0.6	0.5	0.4	0.3	0.1	0.0	-0.2
	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.5	0.4	0.3	0.2	0.0	-0.2	-0.4	-0.6	-0.9	-1.2	-1.6	-1.9	-2.3	-2.8
	344	322	306	288	273	258	246	234	221	211	202	195	184	178	172	158	144	130	118	107	96	87	77	68	60	52	44
S.S	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.0	0.9	0.8	0.7	0.5	0.3
	0.8		0.9	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.8	0.7	0.6	0.4	0.3	0.1	-0.1	-0.3	-0.6	-0.9	-1.3	-1.6	-2.0

Steel Joist Design

Loads:
Lu = 30 psf (orfice)

$$120 psf (PAPTITION)$$

DL = 36 psf (SLARE & DECK)
IS psf (SLARE & DECK)
IS psf (SLARE & DECK)
SPACING: 5'-0"
SPAN • 30'-0"
USE 24LHT
USE 24

Two-way Concrete Waffle Slab Design

\sqrt{y} $\frac{1}{200}$ <	So	1	Sauare Edae Column	Column	The second	Colu	Column Strin States Middle	g Bars	Fach	Midd	Middle Strin			Inmonte				Square		Reinforcing Bars-	ng Bars-	Each	Each Direction	5	
Y Structure and base + No. base Run base base + Run base base - Run base - R		2	B	101	Top			Top		Bottom		Top	_	Iomemo		3	Inte	Ior Column		Column Strip Bottom			Middl Bottom	e Strip	
Table Depth = Bit Table Depth = Bit <th col<="" th=""><th>$c_1 = c_2 \\ (in.)$</th><th>8-</th><th>1333</th><th>stirrups</th><th>cuge No size +</th><th>and a start</th><th>gg.</th><th>No size</th><th>No. Ribs</th><th>Long Bars</th><th></th><th>nterior No size</th><th>Edge (ft-k)</th><th>Bot.</th><th>Int. (ft-k)</th><th>Steel (psf)</th><th>A 101-001-01</th><th></th><th>No. Ribs</th><th>Bars per Rib</th><th>No</th><th></th><th>Bars</th><th>Bars</th></th>	<th>$c_1 = c_2 \\ (in.)$</th> <th>8-</th> <th>1333</th> <th>stirrups</th> <th>cuge No size +</th> <th>and a start</th> <th>gg.</th> <th>No size</th> <th>No. Ribs</th> <th>Long Bars</th> <th></th> <th>nterior No size</th> <th>Edge (ft-k)</th> <th>Bot.</th> <th>Int. (ft-k)</th> <th>Steel (psf)</th> <th>A 101-001-01</th> <th></th> <th>No. Ribs</th> <th>Bars per Rib</th> <th>No</th> <th></th> <th>Bars</th> <th>Bars</th>	$c_1 = c_2 \\ (in.)$	8-	1333	stirrups	cuge No size +	and a start	gg.	No size	No. Ribs	Long Bars		nterior No size	Edge (ft-k)	Bot.	Int. (ft-k)	Steel (psf)	A 101-001-01		No. Ribs	Bars per Rib	No		Bars	Bars
0.000 1146-0 0 <th0< th=""> <th0< th=""> <th0< th=""> <th0< t<="" th=""><th>00</th><th>Rib Depth = 8 in.</th><th>4</th><th>otal Slab De</th><th>epth = 3 in.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th>Total</th><th>Depth</th><th>11 in,</th><th>١. E</th><th>Depth = 8 in.</th><th></th><th>Total S</th><th>lab Dep</th><th>th=3i</th></th0<></th0<></th0<></th0<>	00	Rib Depth = 8 in.	4	otal Slab De	epth = 3 in.								•			Total	Depth	11 in,	١. E	Depth = 8 in.		Total S	lab Dep	th=3i	
0.7263 13-45-0 3 2.44 0.475 2.44 0.44		2222222	0.654 0.675 0.696 0.717 0.760 0.760	,	11-#5+ 0 11-#5+ 0 11-#5+ 0 11-#5+ 0 11-#5+ 0 11-#5+ 0		2-#4 2-#4 2-#4 2-#4 1-#5 and 1-#5 1-#5 and 1-#6	11-55 11-55	~~~~~	*****	<u> </u>	4-4-4-4-4-4- ##-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	5888888	842568	64888546 905388556			0	~~~~~	2-###	11-55 11-55	~~~~~	<u> </u>	#######	
0.732 15-45-0 4 2-44 1-3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 6-45 3 44 110 120 112 120		2222222	0.728 0.755 0.755 0.781 0.807 0.859 0.912	\$	$13, \frac{45}{13}, 0$ $13, \frac{45}{13}, 0$ $13, \frac{45}{13}, 0$ $13, \frac{45}{13}, 0$ $13, \frac{45}{13}, 0$		258395	13-55 13-55	~~~~~	######################################	22222200	5++5 5++5+5 5++5	88515388	51 127 127 229	69 92 115 138 138 229	1.84 1.84 1.95 2.05 2.05 2.40	2555555	00		2-#4 2-#5 2-#5 2-#5 2-#5	13-#5 13-#5 13-#5 13-#5 13-#5 13-#5	~~~~~~	222222	######################################	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6625252 66252	0.792 0.853 0.853 0.890 0.630 0.630		15-45+0 15-45+0 15-45+0 15-45+1 15-45+1 15-45+1 15-45+1	44444	2-#4 1-#4 and 1-#5 2:#5 2:#5 2:#8 2:#8	15-#5 15-#5 15-#5 15-#5 15-#5 15-#6	~~~~~~~~~~	## #5 #5 #7	2# # # # # # # # # # # # # # # # # # #	6-#5 6-#5 6-#5 7-#5	56 56 70 84 111	85 121 208 362 362	115 151 225 298 298 364	1.82 1.82 2.01 2.49 3.19		000		2-#4 2-#4 2-#4 1-#5 and 1-#5 1-#6 and 1-#6 1-#6 and 1-#7	15-#5 15-#5 15-#5 16-#5 16-#5	~~~~~~	## ## ## ## ## ##	****	
- 0.870 20-#5+0 4 1-45 3nd 1-46 3nd 1-46 20-#5+1 4 1-45 3nd 20-#5 5 #4 #5 90 180 202 134 4 1-44 20-#5 5 #4 #5 90 180 202 134 4 1-44 20-#5 5 #4 #5 90 180 202 133 334 4 1-45 20-#5 5 #4 #5 90 180 202 133 334 4 1-44 20-#5 5 #4 #5 96 130 334 334 334 334 2 20 145 5 #4 14 334 334 334 334 334 334 334 14 2 245 5 #5		833325	0.848 0.882 0.915 0.623 0.623		18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 1	4444		18-#5 18-#5 18-#5 20-#5 26-#5	44444	##4 #5 #6	技 表 表 表 表 表 表 表 表 表 表 表 表 表	7-#5 7-#5 7-#5 9-#5 9-#5	63 105 125 155	127 180 247 310 412	171 226 336 435	1.95 2.05 3.24 3.24	42522	0000	4444	2-#5 2-#5 2-#5	18-#5 18-#5 18-#5 18-#5 17-#6	বৰৰৰ	## ## # # # # # # # # # # # # # # # #	žžžčž	
0.879 22-#5 5 #4 #5 9-#5 126 249 336 1.94 15 1-#4 22-#5 5 #4 #6 0.0273 22-#5 5 #5 #5 9-#5 126 249 336 1.94 15 2-#5 5 #4 #6 0.0273 22-#5 5 #5 #5 9-#5 164 329 4.30 2.31 15 32.41 5 1-#6 24-#5 5 #6 #6 0.0273 22-#5 5 #5 #5 9-#5 164 329 4.30 2.31 15 32.41 5 1-#6 34-#5 5 #6 #6 0.027 22-#5 5 #6 #1 143 2.31 15 33.41 5 1-#6 34-#5 5 #6 #5 0.027 22-#5 5 #6 11-#5 201 437 541 302 15 35.41 5 35.45 5 #6 #5 0.027 22-#5 5 #6 11-#5 201 437 501 302 15 35.41 5 35.45 5 35.45 5 <		15	0.870 0.914 0.930 0.623		20-#5+ 0 20-#5+ 1 20-#5+ 4 20-#5+ 1		and 1-#6 and 1-#7 and 1-#8 and 1-#9 and 1-#9	20-#5 20-#5 24-#5 20-#6	ດດດາດ	###### 4.4.70.8	¥ £ £ £ £	88-#55 9-#55 9-#55	90 119 175	180 246 339 426	242 321 328 472	1.94 2.02 3.10	<u></u>	000	4444	2-#5 2-#5 2-#5	20-#5 20-#5 22-#5 19-#6	ເດເດເດເດ	* * * * *	22.25.55	
	2.12 H 2.62 H 3.30 22	16.	0.879 0.923 0.921		22-#5+ 1 22-#5+ 5 22-#5+ 8		and 1-#6 and 1-#7 and 1-#8	22-#5 26-#5 23-#6	տտո	推移ස	花花花	9-#5 9-#5 11-#5	125 201	249 329 437	336 541 541	1.94 2.31 3.02	ង ស ស	S 4 S 4		1-#4 and 1-#5 1-#5 and 1-#5 1-#6 and 1-#7	22-#5 24-#5 22-#6	ມມາ	## #5		

11-19